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We present a numerical study on the phase-ordering kinetics of the smectic-C film under an external
magnetic field. Due to the inversion symmetry of the director fields, the external field induces Ising-like
inversion domain walls in this system. It is observed that the usual dynamic scaling based on a single dominant
length scale is violated for the Ising-like order parameter, except in the asymptotic time limit. This scaling
violation is attributed to the existence of point defects along the domain walls and the corresponding length
scale~the average separation between point defects! in addition to the average domain size. The correlation
functions exhibit a very slow approach to the asymptotic scaling limit, with early-time correlation functions
characterized by large curvature near the origin, gradually crossing over to Ising-like correlation functions at
the late-time stage. In spite of this apparent violation of dynamic scaling, we find that the above slow approach
toward the asymptotic pure Ising scaling function follows a universal functional form when the time is properly
rescaled in terms of the field-dependent time scale.@S1063-651X~96!11705-7#

PACS number~s!: 64.70.Md, 64.60.Cn, 64.60.My, 82.20.Mj

I. INTRODUCTION

Understanding the ordering kinetics of statistical systems
that are subjected to a rapid thermal quench from a disor-
dered phase to an ordered phase has long been one of the
central issues in nonequilibrium statistical mechanics@1–3#.
Recent nonperturbative approaches@4–6# to this problem
seem to provide significant theoretical progress in this area.
By being extended to systems possessing continuous degen-
eracy of ground states, the theory@7–9# has stimulated inten-
sive theoretical and experimental investigations on the kinet-
ics of systems having a variety of stable topological defects
such as vortices, strings, and monopoles. In spite of this im-
portant progress, it appears that the effects of symmetry-
breaking external fields on the phase-ordering kinetics have
been less well studied@10,11#.

It is noteworthy that liquid crystal systems@12# have
served as an appropriate test ground for important theoretical
predictions made for phase-ordering kinetics of systems pos-
sessing continuous symmetry@13#. At the same time, for
these systems many equilibrium studies on the effects of
external fields have been carried out. Helfrich@14#, de
Gennes@15#, Brochard @16#, and others@17# have studied
equilibrium profiles of inversion domain walls induced by an

external magnetic field subjected to various anchoring con-
ditions of the glass plates between which liquid crystal
samples are placed. Pindaket al. @18# have observed a mac-
roscopic pattern of 2p-disclination walls in a ferroelectric
smectic-C film under external electric fields.

One can imagine a nonequilibrium situation where a
smectic-C film is quenched from an isotropic disordered
phase under external magnetic fields. In this situation, the
field-induced inversion domains will coarsen as the system
evolves toward its equilibrium ordered phase. In the present
work, we report a numerical investigation of growth kinetics
of these inversion domains. A similar numerical simulation
has been carried out by Pargelliset al. @19# with the motiva-
tion quite different from that of the present study: their ex-
perimental observation on the coarsening process of a free
standing smectic film~with no external field! did not agree
with the theoretical expectation based on the two-
dimensionalXY model. For example, while in the two-
dimensionalXYmodel the defect density shows a power-law
decay, the experimental result exhibited an exponential de-
cay for the same quantity. In order to resolve this discrep-
ancy, they invoked an internal field and its dipole coupling to
the director field. Focusing on this issue, they did not deal
with the detailed aspects of the growth and coarsening of the
inversion domains.
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We summarize briefly in the following the main results of
the present work. First, we find that the usual dynamic scal-
ing based on a single dominant length scale is systematically
violated in the equal-time correlation functions for the Ising-
like order parameter, except in the asymptotic time limit.
This scaling violation may be attributed to the existence of
another length scale~in addition to the average domain size!
corresponding to the average separation between point de-
fects residing on the domain walls. The average size of do-
mains LI(t) begins, at the early stage of ordering, as
LI(t);tf1 with f1.0.38, and then crosses over at the late-
time stage tof2.0.46, which is close to the curvature-
driven growth exponent 1/2.

It is possible to identify a time scalet(h) depending on
the magnetic fieldh, with which we can rescale the time
dependence of the domain size for various values ofh.
WhenLI(t) is measured in units ofj, the equilibrium width
of domain walls, this procedure results in a fairly good col-
lapse of the time dependence of the domain size for different
values of the external field. The same time scalet(h) can be
used to rescale the time dependence of the excess energy
relaxation and also in rescaling the systematic approach to
the asymptotic~Ising! limit for the equal time correlation
functions.

This paper is organized as follows. In Sec. II, the model
and the simulation methods are described. The main results
of our simulations are presented in Sec. III along with the
discussions on the results, which is followed by Sec. IV,
summarizing the main features of this work.

II. THE MODEL

The elastic free energy for smectic-C film under a mag-
netic field@12#, assuming the equal elastic constants, is given
by

F@n#5E d2r FK2 ~¹W nW !21
g

4
~nW 221!22

x

2
~nW •hW !2G , ~1!

where the first term represents the elastic energy cost for
distortion of the director fieldnW , the second one drives the
director field into unit length in the absence of the external
field, and the last denotes the coupling of the director field to
the external uniform magnetic field. The parametersK, g,
andx denote the isotropic elastic constant, the rigidity of the
director, and the magnetic susceptibility, respectively. In the
present case, the director fieldnW is a two-component real
vector field, which characterizes the in-plane molecular ori-
entation in smectic-C film. The dynamic equation governing
the evolution of the system toward equilibrium is assumed to
be the model A@20#, appropriate to systems with noncon-
served order parameters, of the form

]nW

]t
52

dF

dnW
5K¹2nW 1g~12nW 2!nW 1x~nW •hW !hW , ~2!

where the thermal noise is ignored since we consider the case
of zero-temperature quench only.

Due to the presence of the symmetry-breaking external
field, theO(2) symmetry is broken and the inversion sym-
metry of the director field generates the discrete Ising-like

double degeneracy of the ground states. Therefore, defining

an Ising-like order parameters5nW •ĥW where ĥW is the unit
vector along the direction of the external magnetic field, one
can obtain dynamic equation for the order parameter field
s. In order to do so, it is convenient to decompose the di-

rector fieldnW into components along the directionsĥW and t̂W
parallel and normal to the magnetic field, respectively:

nW ~rW,t !5s~rW,t !ĥW 1p~rW,t ! t̂W. ~3!

Multiplying ~2! with the unit vectorsĥW , t̂W respectively, we
obtain the following set of dynamic equations for the two
fieldss andp:

]s

]t
5K¹2s1gS 11

xh2

g
2s22p2Ds, ~4!

]p

]t
5K¹2p1g~12s22p2!p. ~5!

From Eqs.~4! and ~5! we can obtain the ground-state
configurationss56A11h2 andp50 with the ground-state
energyEG52h2(h212)/4. The equilibrium profile of an
isolated straight domain wall~infinitely extended! is obtained
by solving the set of stationary equations resulting from~4!
and ~5!,

K
d2s

dy2
52gS 11

xh2

g
2s22p2Ds, ~6!

K
d2p

dy2
52g~12s22p2!p, ~7!

wherey is the coordinate normal to the wall.
In the hard spin limit, i.e.,g→`, one can represent the

two fieldss andp in terms of a phase angleu with respect

to the direction of magnetic fieldĥW as one does in theXY
model:s5cosu, p5sinu. Using this representation, one can
obtain from~6! and~7! the equation for the phase angleu of
the form

K
d2u

dy2
5

xh2

2
sin~2u!. ~8!

This is a sine-Gordon equation whose solution is given by
u(y)52tan21@exp(y/j)#, provided u(y50)5p/2, where
j5AK/xh2 is the equilibrium width of the domain wall.
Note that it is inversely proportional to the strength of the
magnetic field.

Simulation is carried out by directly integrating in time
Eq. ~2! with random initial conditions using the Euler algo-
rithm with the integration time stepDt50.1 on a square
lattice with linear sizeN5400. The integration is performed
up to t51280. The Laplacian in~2! is discretized with the
mesh sizeDx5Dy51. Periodic boundary conditions in both
lattice directions are employed. The parametersK, g, and
x are all set equal to unity and the direction of the uniform

magnetic field is taken to be along thex axis:hW 5hx̂W .
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In order to probe the growth of the inversion domain
walls, we compute the equal-time correlation function
C(rW,t)5^s(0W ,t)s(rW,t)& for the Ising-like order parameter
s, the excess energy relaxation, and the time dependence of
the number of point defects, where^& denotes the average
over random initial configurations. Here the average was
taken over 30 to 60 different random initial configurations. It
should be emphasized that the random initial conditions are
not biased by the external magnetic field.

III. SIMULATION RESULTS AND DISCUSSIONS

Before presenting the details of the simulation results, we
briefly summarize the characteristic features of the pure Ising
domain growth for the case of the nonconserved order pa-
rameter@1–3#. An important feature associated with the Ising
growth is its self-similar nature, which is reflected in a scal-
ing collapse of the equal-time correlation functions for the
Ising order parameter computed at different times with the
appropriate length scaleL(t), i.e.,C(rW,t)5 f @r /L(t)#, f (x)
being the scaling function resulting from the collapse of the
correlation functions. This dynamic scaling implies that there
is a dominantsingle length scale in the ordering process that
is regarded as the average size of Ising domains. The char-
acteristic time dependence of the length scaleL(t), the
growth law, is known to beL(t);t1/2, coming from the fact
that the motion of domain wall is driven purely by its local
curvature.

Equivalently, the dynamic structure factorS(kW ,t), the
Fourier transform ofC(rW,t), has the corresponding scaling
form

S~kW ,t !5E ddreik
W
•rWC~rW,t !5Ld~ t !g„kL~ t !…, ~9!

whereg(y) is the Fourier transform of the scaling function
f (x). The short distance part of the scaling functionf (x) is
of the form

f ~x!512const3x, x!1. ~10!

This short distance behavior, known as Porod’s law@21#, is a
direct consequence of sharpness of the domain walls~the
thickness of the wall is very small compared to the average
domain size!. This behavior is also manifested in the scaling
function of the dynamic structure factor as a power-law tail
in the large wave-vector limit, i.e.,

g~y!;y2~d11!, y@1, ~11!

which becomesg(y);y23 for d52. The excess energy
shows a power-law decay of the form

DE~ t !;L~ t !21;t21/2. ~12!

This behavior comes from the fact that the energy is dissi-
pated mostly near the domain walls.

We now turn to discuss our simulation results. In order to
see if the growth of the inversion domains exhibits self-
similar morphology, we introduce an appropriate length
scaleLI(t) defined asC@r5LI(t),t#51/2 for a given time
t. Then the order-parameter correlation functions are plotted

against the scaled distancer /LI(t). If these plots are col-
lapsed onto a single master curve, then the equal-time corre-
lation function satisfies a dynamic scalingC(r ,t)
5 f @r /LI(t)#, f (x) being the scaling function independent of
time. However, for the present case, as Fig. 1 clearly shows,
this procedure does not lead to a single curve onto which all
correlation functions collapse. In order to see this scaling
violation more closely, we focus in Fig. 2 on the short-
distance part of the scaled correlation functions and for com-
parison we also show the scaling functions for the pure

FIG. 1. Scaled correlation functionsC@r /LI(t),t# at different
times t510,20,40,80,160,320,640,1280 forh50.8, where the
length scaleLI(t) is defined asC@r5LI(t),t#51/2. The simple
dynamic scaling is clearly violated.

FIG. 2. Short-distance part of the scaled correlation functions in
Fig. 1, which shows a slow approach of the scaled correlation func-
tion to the pure Ising correlation function. Note that it has a con-
siderable curvature at early time stages.
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O(2) model and the Ising model both in two dimensions
obtained from recent simulations carried out by the present
authors@22#. We first observe from Fig. 2 that, in contrast to
the case of pure Ising domain growth, the scaled correlation
functions show considerable curvature in the short-distance
part at the early stage of ordering, and as the ordering pro-
ceeds further the scaled correlation function slowly ap-
proaches the pure Ising scaling function, gradually reducing
its short-distance curvature. We may explain this slow ap-
proach to the asymptotic limit and the resulting scaling vio-
lation for any finite time span, in terms of the existence of a
different length scale in our model in addition to the usual
length scale of average domain size. Namely, we have point
defects along the domain walls and the coarsening process
involves not only the decay of the domain walls but also that
of these point defects on the inversion walls. Hence the av-
erage separation between point defects offers another length
scale to take into account in the ordering process, which can

break the self-similarity of the ordering process based on a
single length scale.

In spite of this scaling violation based on the single domi-
nant length scale, the length scaleLI(t) can still be consid-
ered as a meaningful length scale for the average size of the
ordered domains, and one can extract the growth law expo-
nents from data onLI(t) for various values of the external
fields h. These are shown in Fig. 3~a!, from which we see
that LI(t) grows, at an early stage, with the power-law ex-
ponent off1.0.38 and then it slowly crosses over into the

FIG. 3. ~a! Time dependence of the length scaleLI(t) for sev-
eral external fields.~b! Scaling of the length scalesLI(t) using the
field-dependent time scalet(h).

FIG. 4. Interpolation functionU that represents the slow ap-
proach of the scaled correlation functions to the asymptotic limit.
The functional form becomes universal, independent of the field
h, when the time is rescaled with the same field-dependent time
scalet(h) as used in Fig. 3~b!.

FIG. 5. Time dependence of the total number of point defects
for a few values of the external magnetic field. It shows a power-
law decay in timeNp(t);t2np, with np.0.76.
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late time exponentf2.0.46, which is close to the pure
curvature-driven growth exponent of 1/2. As the magnitude
of the magnetic fieldh increases, the time scale at which the
crossover occurs tends to decrease, which is consistent with a
dimensional analysis from Eq.~2!, which givest;1/h2.

From this observation, we may be tempted to try to col-
lapse the time dependence ofLI(t) for various values of the
external fieldh, by measuring the domain sizeLI(t) in terms
of the equilibrium wall widthj;1/h and the timet in units
of t(h), i.e., hLI(t)5G@ t/t(h)#. We find that it is indeed
possible to collapseLI(t) for various values ofh, which is
shown in Fig. 3~b!. For the best collapse the field depen-
dence of the time scalet scales ast;1/h2 for h,1.0, con-
sistent with the dimensional analysis, andt;1/h for
h>1.0.

Collapse ofLI(t) for various values of the magnetic field
h signifies that, even though the system does not possess
self-similarity of the ordering process, there still exists a kind
of regularity in the ordering process itself. This leads us to
speculate that there may also exist a similar kind of regular-
ity in the manner in which the rescaled correlation functions
approach the asymptotic limit. We indeed find that the ap-

proach of the rescaled correlation functionsF(x,t) to the
asymptotic limit can be represented as

F~x,t ![C@r /LI~ t !,t#5 f I~x!1U„t/t~h!…@ f 0~x!2 f I~x!#,
~13!

wheref I(x) is the Ising scaling function andf 0(x) the scaled
correlation function at some reference initial time~here taken
to bet50). The functionU(t/t), shown in Fig. 4, represents
an interpolation function in time and evidently satisfies
U(0)51 and U(`)50. Note that the same time scale
t(h) appears here as that used in the collapse ofLI(t). When
we tried a nonlinear fit of the form
U(t/t);1/@11b(t/t)m# with b a constant, we could get
m.0.6.

The time dependence of the average separation between
point defects can be obtained from measuring the total num-
ber of point defectsNp(t), which is shown in Fig. 5 for a
few values of the external field. It exhibits a power-law de-
cay in timeNp(t);t2np with np.0.76, and this implies that
the average separation between point defects goes as
Lp(t);1/ANp(t);t0.38, which coincides with the growth ex-
ponent ofLI(t) at the early time stage of the ordering pro-
cess. Therefore, at this early time stage of ordering, the av-
erage domain size coincides with the average separation
between point defects, and the short-distance behavior of the
correlation function for the Ising-like order parameter is
strongly influenced by the presence of point defects on the
domain walls, resulting in the scaled correlation functions
with larger curvature near the origin. At the late stage of
ordering, the average domain size grows faster than the av-
erage separation between the point defects does, and there-
fore the effect of the point defects on the short-distance be-
havior of the correlation function becomes weaker, reducing
the short-distance curvature of the scaled correlation func-
tions.

Experimentally, the point defects are most clearly seen in
the Schilieren texture in which the intensity of the light re-

FIG. 6. Snapshots of the Schilieren texture at various times
t55,10,20~from top left down!, 40,80,160~from top right down!
for h50.4 on a square lattice with linear size 128. We see the
annihilation of point defects on the domain walls as the ordering
proceeds.

FIG. 7. Relaxation of the excess energy in the rescaled time
t/t(h). It exhibits a power-law formDE;t2nE, with nE.0.48.
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flected from the liquid crystal sample placed between two
polarizers with perpendicular polarization axes are measured.
In numerical simulations, we can easily produce snapshots of
such images, which are shown in Fig. 6, where the intensity
is proportional to sin2(2u), u being the angle between a po-
larization axis and the director field. In this figure, a point
defect can be identified as a point at which four bright~or
dark! regions meet. We see that as mentioned above, the
ordering process involves annihilations of point defects.

Another quantity of interest is the time dependence of the
excess energy relaxation, shown in Fig. 7 for different values
of the external field. Here, we can also rescale the data with
time in units oft(h) andDE in units ofh2. That is, we have
DE/h25Y@ t/t(h)#. We see that the excess energy relaxes in
time as a power law ofDE;t2nE with nE.0.48, which is
close to the behavior we can expect based on the character-
istic features of Ising domain growth as mentioned earlier
@see Eq.~12!#.

IV. SUMMARY

We investigated numerically the coarsening and growth
of Ising order associated with the field-induced domain walls

using the two-dimensional continuum time-dependent
Ginzburg-Landau model based on a planar vector that in-
cludes a term breaking theO(2) symmetry, leaving Ising
degeneracy of the ground states. We found a systematic scal-
ing violation in the equal time correlation functions for the
Ising-like order parameter, which may be attributed to the
existence of a new length scale corresponding to the average
separation between point defects residing on the domain
walls. Some of the results obtained in the present simulations
may be experimentally tested in smectic-C films under an
external magnetic field.
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